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The problem of the dyuamic stability of a rectangular viscoelastic plate (strip) around which there is a flow from one side of a 
plane-parallel stream of an ideal fluid is considered in a classical formulation. The loading is determined within the framework 
of piston theory. Attention is paid mainly to investigating the effect of low viscosity on the value of the critical parameter. A 
traditional stability criterion is used. ©1996 Elsevier Science Ltd. All fights reserved. 

In the problem of flutter of a rectangular viscoelastic plate using the Bubnov-Galerkin method and averaging, it 
was shown in [1, 2] that the critical flow velocity is approximately half that for the corresponding elastic plate with 
an instantaneous Young's modulus, and this ratio is independent of the viscous properties of the plate material. 
This result gives rise to a natural dissatisfaction since it refers to the asymptotic stability and it is presented as 
almost obvious that the sufficient condition of stability and the critical flow velocity corresponding to it can be 
found from the solution of an elastic problem by replacing the instantaneous modulus by its limiting value. There 
are no exact solutions of problems on panel flutter which would confirm or refute this intuitive conclusion. It is 
confirmed in [3] using the example of a single model problem and in this paper using examples of problems on 
the flutter of a strip and a rectangular plate. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider a rectangular plate which occupies the domain 0 ~ x <~ l/~, 0 <~ y <~ I in the xy plane The plate is 
made of a linear viscoelastic material and the relation between the stresses and strain is given by 

t 

13 = E o ( e ( t ) - k  ~ F ( t -  ~)E(~)d'0 = E 0 ( I -  ~.f~)E(t) 

f't~(t) = 7F(x)e(t  - x)ak 
0 

Here E0 is the instantaneous modulus and F(t) is the relaxation kernel. The limiting value of the modulus is equal 
to 

*?_ 
E** =Eo( I -~ .Fo)  , F 0 = J  r( t )dt  

0 

Henceforth, we shall assume that the material possesses a low viscosity to which (kF0) 2 "¢ I corresponds. 
The plate is locatod in a gas stream, the velocity vector of which V = {~x, ~} ,  I V I = v is parallel to its plane. 

It is required to find that value of the flow velocity u* for which the motion of the plate will be asymptotically 
stable, subject to the: condition that v < .* .  

We now introduce, while retaining the same notation for them, the dimensionless coorcYmatesx/l,y/l, the velocity 
2 4 3 2 V/C0 and the time t/to (to = phi/Do, Do = Eoh/[12(1 - v )],Po, Co are the pressure and the velocity of sound in 

the unperturbed flow, r is the polytropic index and p and v are the density and Poisson's ratio of the plate material, 
and h is its thickness). In accordance with the results obtained previously [4], we shall describe the motion of the 
plate by the equatio:a 

(1 - kf')A2w + a2Vgrad w + al~w / ~t + ~2w / ~t 2 = 0 (1.1) 

a I = p0K/4/(CoDoto), a2 = poK/3 / D O 

The corresponding boundary conditions have to supplement this equation. 
We shall investigate the motion of the plate in the class of functions w = 9(x, y)exp( /~) ,  and, on substituting 

this into (1.1), we obtain 
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(1 - ~,,r(0))) A2tp + a2V grad tp + (/alto - 0)2 )tp = 0 (1.2) 

o o  

F(0)) = ~ F(x)e-i°ndx = S F(x)(cos0)x-  isinttr0dx - Fc (0 ) ) -  ir,,(0)) (1.3) 
0 0 

Motions with Im 0) > 0 will be stable and those with Im 0) < 0 will be unstable. Real  frequencies correspond to 
the boundary of these domains, and the critical flow velocity is de te rmined  from this very condition. We note that,  
when Im 0) = 0, the functions re(o)) and Ts(0)) from (1.3) are the cosine and sine Fourier  transforms of the relaxation 
kernel. 

2. A N  I N F I N I T E L Y  L O N G  S T R I P  

In the case when ~ = 0, we take the function (p(x,y) which satisfies the condit ions of hinged support  along the 
edgesy  = 0 ,y  = 1 in the form [5, 6]: cp(x,y) = sin ny exp(-io0c), where  a is a real number  which guarantees the 
boundedness  of  the initial deflections for all values ofx.  

Substituting into (1.2), we arr ive at the two equations 

• 0)2 = (l  - ~ r  c ( 0 ) ) ) ( a  2 + ~2 ) 2  a2x) x = tO + ~.rs (0)) ( a  2 + ~2 )2 (2.1) 

a I a a l a  

It follows that  0) = to(a), is determined f rom the first equation,  this is substi tuted into the second equation, and 
the critical flow velocity ~* = mina(a)x(~x(oQ) and the wave format ion paramete r  a* corresponding to it are then 
determined.  

In practice, the solution of the problem is complicated by the fact that  the analytic solution of the first of  Eqs 
(2.1) in the case of an arbitrary kernel  is impossible. 

However,  by virtue of the obvious inequalities 

r~(tn) <~ ro = r~(o), (kr~(0))) 2 <~ (~.ro) 2 ,~ I 

its solution can be obtained by the converging method of approximations 

0 ) 0 = a 2 + ~  2, 0)n=0)0 ( l -~Fc(0 )n_ l ) )  y2, n = l , 2  .... 

whence the representat ion con = 0)0(1 - ~,Fe(0)o)) 1~ + ~2An(0)o, ~,), in which An(tao, ~,) are bounded  functions, 
follows, assuming a continuous derivative Fc(0)0) exists. We restrict  ourselves to the first term, put  0) = con ~- 
COo(1 - ~,Fc(0)o)) lr2 and substitute this into the second expression from (2.1), retaining terms containing X to the 
first power. We obtain 

a2 a 2  +/Ic2 (2.2) - - 1 )  x = ~ ( 1  -- ~.Fc (0) 0 )) I/2 + ~.Fs (tl} 0 ) ( a 2  + g2 )2 

a I a a l a  

Assuming a continuous derivative ~(0)0) exists, f rom (2.2) we find the minimum point in the form % = ~ + 
LB(k), where B(k)  is a bounded function. Substituting (2.2), we obtain 

a 2 • + kl-,s (2~2)  4/t3 1) x = 21t(l - ~.F c (2g  2 ))~2 
al  a I 

(2.3) 

apart  from terms in the first power of X. 
We now introduce the "limiting modulus" value of the velocity 1) 0 = (2rtal/a2)(1 - ~F0) 1/2. It is obvious that  u0 

< ~x* and, hence, when ~x < ~0, l)x < l)* will certainly hold. Consequently,  the inequality ~x < ~0 will be  a sufficient 
condit ion for stable motions of a viscoelastic strip. 

In the case when ~x = 0, we construct the approximate  solution of (1.2) using the Bubnov--Galerkin method  in 
the two-term approximation (this turns out  to be  sufficient to achieve good accuracy [7] when solving problems 
of  the flutter of  elastic plates) 

(p(x,y) = (C l sin~y + C 2 sin 2 g y ) e x p ( - i a x )  

After  carrying out  a well-known procedure,  we obtain the system of equations 

0)3 + ~"1 +~'2 ~Fs(0))0)2 ~'1 +)"2 (1_ ~.Fc (0)))0) - ~'1~'2 (1_ M~c(0)))M~s(0)) = 0 
2a I 2 a I 

(2.4) 
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8 2 
(3a2"y) =[a? +(~'l +~'2)(l-~.I~c(03))]032 +~,Fs(03)(~.l +~.2)al 03- 

- ~'l ~'2 [(1 - ~,1" c (03))2 _ ~2 F 2  (03)] _ 034 

~,l = ~2  + ~ 2  ~2 = or2 + 492  

(2.5) 

As in the previou:; case, it is necessary to determine 03 = c0(a) from the first equation, substitute it into the second 
and then minimize it with respect to a. 

We denote the left-hand side of (2.4) by f(03) and let 03* be the positive root of the equation 203 2 = (kl + ~ )  
(1 -~.Fc(t0)). The e~istence of this root is proved in the same way as before. 

It is easily shown that f(0) -- 0,f ' (0) < 0,f(03") > 0 and all this points to the existence of a positive root of Eq. 
(2.4) which is smaller than to*. We find this root using the expansion with respect to the parameter ~. 03 = to* - 
k03[ + . . . .  retaining the terms which have been written out. The calculations lead to the result 031 ffi Fs(03*)(~ - 
~,1)/[4al(~q + ~2)]. On substituting 03 - 03* - ~ 1  into Eq. (2.5), we finally obtain (with an accuracy, with respect 
to ~, up to the first power) 

8 a , ,~2 
"~ 2") ' )  = Bl(a)+~kB2(0t) (2.6) 

Bl(a)=a 2 ~.t + ~ ' 2  ( 1 _  M~c(03")).~ (~'2 - ~1)2 (1_~.l-.c(03"))2 
2 4 

B 2 (or) = F s (03*) al  ( l  - ~.F c ( 0 " ) ) ~  (~'1 + ~'2 )2 + 4~,1 ~'2 
242  (~'~ + ~'2))~ 

In this case, it is obvious that B2(a) > 0 when a ~ O, rain Bl(a) = B I ( 0 ) .  
If the "limiting modulus" velocity "0 is now introduced 

2 2 - 4 2 
.o2=17(3a t~*  / ( l _kF0)+  45g (1-kF0)  ] 

2 ( 8a 2 J ~ J 

then it is possible to assert that the inequality ~ < ~ will be a sufficient condition for stable motions of the 
strip. 

3. A R E C T A N G U L A R  P L A T E  

Assuming that "x -- 0, we take the two-term approximation 

tp(x,y) = (C I sinny+C 2 sin 2~y)sin [~/~x 

for ~(.,y). 
The Bubnov--Galerkin procedure with respect to (1.3) leads to system (2.4), (2.5) in which the parameters ~,1 

4 2x2 4 2~2 and ~ have to be re, placed by [~1 = g (1 + [I ) and ~i2 = g (4 + [I ) ,  respectively. 
By repeating, apart from the new notation, the arguments.2and calculations of Section" 2, we obtain a relation 

for the critical velocity which is analogous to (2.6), where 203 = ([~1 + ~)(1  - ~J'c(03")). We now introduce the 
"limiting modulus" velocity "0. 

"0  = ([~! + [~2 )(1 - M-" 0 ) + ,3([~2 - [~! )(1 - ZF 0 ). 
\ 2 / 16a2 

It is obvious that the inequality by > "0 will be the sufficient condition for stable vibrations of the plate. 
Hence, the critical velocity of the flutter of a viscoelastic plate (with "low" viscosity) depends continuously on 

the viscosity parameter and can be found (conservatively) as the limiting modular velocity by solving the corres- 
ponding elastic problem. The possibility of using the Bubnov-Galerkin and averaging methods jointly in problems 
of the non-conservative stability of viscoelastic plates requires a deeper analysis. 
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